Second order stochastic differential equations with Dirichlet boundary conditions
نویسندگان
چکیده
منابع مشابه
Stochastic Partial Differential Equations with Dirichlet White-noise Boundary Conditions
– The paper is devoted to one-dimensional nonlinear stochastic partial differential equations of parabolic type with non homogeneous Dirichlet boundary conditions of white-noise type. We formulate a set of conditions that a random field must satisfy to solve the equation. We show that a unique solution exists and that we can write it in terms of the stochastic kernel related to the problem. Thi...
متن کاملLinear Stochastic Differential Equations with Boundary Conditions
We study linear stochastic differential equations with affine boundary conditions. The equation is linear in the sense that both the drift and the diffusion coefficient are affine functions of the solution. The solution is not adapted to the driving Brownian motion, and we use the extended stochastic calculus of Nualar t and Pardoux [16] to analyse them. We give analytical necessary and suffici...
متن کاملSecond Order Pdes with Dirichlet White Noise Boundary Conditions
In this paper we study the Poisson and heat equations on bounded and unbounded domains with smooth boundary with random Dirichlet boundary conditions. The main novelty of this work is a convenient framework for the analysis of such equations excited by the white in time and/or space noise on the boundary. Our approach allows us to show the existence and uniqueness of weak solutions in the space...
متن کاملVariational Approach to Impulsive Differential Equations with Dirichlet Boundary Conditions
We study the existence of n distinct pairs of nontrivial solutions for impulsive differential equations with Dirichlet boundary conditions by using variational methods and critical point theory.
متن کاملSecond order linear differential equations with generalized trapezoidal intuitionistic Fuzzy boundary value
In this paper the solution of a second order linear differential equations with intuitionistic fuzzy boundary value is described. It is discussed for two different cases: coefficient is positive crisp number and coefficient is negative crisp number. Here fuzzy numbers are taken as generalized trapezoidal intutionistic fuzzy numbers (GTrIFNs). Further a numerical example is illustrated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 1991
ISSN: 0304-4149
DOI: 10.1016/0304-4149(91)90028-b